STAT 548
Machine Learning for Big Data
4.0 credits
Course Description
Covers machine learning and statistical techniques for analyzing datasets of massive size and dimensionality. Representations include regularized linear models, graphical models, matrix factorization, sparsity, clustering, and latent factor models. Algorithms include sketching, random projections, hashing, fast nearest-neighbors, large-scale online learning, and parallel learning (Map-Reduce, GraphLab). Prerequisite: either STAT 535 or CSE 546. Offered: jointly with CSE 547; W.