Yaniv Romano

Yaniv Romano is a Postdoctoral Scholar in the Department of Statistics at Stanford University, advised by Prof. Emmanuel Candes. He earned his Ph.D. and M.Sc. degrees in 2017 from the Department of Electrical Engineering at the Technion—Israel Institute of Technology, under the supervision of Prof. Michael Elad. Before that, in 2012, Yaniv received his B.Sc. from the same department. His research spans the theory and practice of selective inference, sparse approximation, machine learning, data science, and signal and image modeling. His goal is to advance the theory and practice of modern machine learning, as well as to develop statistical tools that can be wrapped around any data-driven algorithm to provide valid inferential results. Yaniv is also interested in image recovery problems: the super-resolution technology he invented together with Dr. Peyman Milanfar is being used in Google's flagship products (Pixel 2/XL Phones, Google Clips, Google+, and Motion Stills), increasing the quality of billions of images and bringing significant bandwidth savings. In 2017, he constructed with Prof. Michael Elad a Massive Open Online Course (MOOC) on the theory and practice of sparse representations, under the edX platform. Yaniv is a recipient of the 2015 Zeff Fellowship, the 2017 Andrew and Erna Finci Viterbi Fellowship, the 2017 Irwin and Joan Jacobs Fellowship, the 2018–2020 Zuckerman Postdoctoral Fellowship, the 2018–2020 ISEF Postdoctoral Fellowship, the 2018–2020 Viterbi Fellowship for nurturing future faculty members, Technion, and the 2019–2020 Koret Postdoctoral Scholarship, Stanford University.